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Synchronization and control of coupled Ginzburg-Landau equations using local coupling

Lutz Junge* and Ulrich Parlitz
Drittes Physikalisches Institut, Universita¨t Göttingen, Bürgerstraße 42-44, D-37073 Go¨ttingen, Germany

~Received 22 October 1999!

In this paper we discuss the properties of a recently introduced coupling scheme for spatially extended
systems based on local spatially averaged coupling signals@see Z. Tasevet al., Int. J. Bifurcation Chaos Appl.
Sci. Eng.~to be published!; and L. Jungeet al., Int. J. Bifurcation Chaos Appl. Sci. Eng.9, 2265 ~1999!#.
Using the Ginzburg-Landau model, we performed an extensive numerical examination of this coupling
scheme, i.e., a complete scan through the relevant coupling parameters. Furthermore, we demonstrate suppres-
sion and control of spatiotemporal chaos, e.g., stabilizing the homogeneous steady state and spatially localized
control. As an application all model parameters of the Ginzburg-Landau equation are estimated given only the
local information of the system.

PACS number~s!: 05.45.Xt, 05.45.Gg, 05.45.Jn
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I. INTRODUCTION

Synchronization phenomena are of fundamental imp
tance in many physical, biological, and technical systems
particular, synchronization of chaotic dynamics@1# has at-
tracted much attention during the last few years becaus
its role in understanding the basic features of coupled n
linear systems and in view of potential applications in co
munication systems, time series analysis, and modeling@2#.
Different coupling schemes have been proposed in orde
achieve synchronization in particular for unidirectiona
coupled systems@1#. Recently, synchronization and contr
of spatially extended systems such as coupled map lat
~CML’s! @3#, arrays of coupled oscillators@4#, or partial dif-
ferential equations@5# have gained much interest. Most o
the studies focused on coupled map lattices, which are
simplest models for spatiotemporal chaos and are the
step when exploring spatially extended systems. CML’s
discrete in time and space and the individual maps are
ally diffusively coupled in space, e.g., with nearest neigh
coupling. Diffusively coupled ordinary differential equation
~CODE’s! are the next step~continuous in time and discret
in space! @4#. A widely used controling technique for bot
system classes is the so-called ‘‘pinning control’’@3# which
affects single cells, e.g., maps or ODE’s, or in the case
synchronization, connects pairs of single cells of the t
systems. When we now consider the next step and g
systems with continuous space variables, e.g., partial dif
ential equations~PDE’s!, we run into trouble. The reason
that we no longer have single cells to control or to conne
Instead we now have a continuum and the pinning con
technique which acts on points in space is no longer ap
cable @6#. Therefore, we use in this paper a recently int
duced coupling scheme for PDE’s@7,8# based on local spa
tial averaged coupling signals~sensors!, which are a model
for typical experimental sensors and actuators.

The sensor coupling scheme is introduced in the next
tion. In Sec. III we present the results of a detailed numer
examination of the synchronization of two couple
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Ginzburg-Landau equations using the sensor coupling
discuss the influence of relevant coupling parameters. In S
IV the coupling scheme is used for controlling purposes a
in Sec. V we demonstrate that distinctlocal regions of the
PDE’s can be synchronized and controlled, while the res
the space remains unaffected. As an application of the se
coupling scheme we estimate all model parameters of a P
in Sec. VI.

II. SYNCHRONIZATION OF SPATIALLY EXTENDED
SYSTEMS

In the past decade, synchronization of dynamical syste
has attracted much interest and various definitions and ty
of synchronization were proposed, e.g., identical@1#, gener-
alized@9#, lag and phase synchronization@10#. In this paper,
we restrict ourselves toidentical synchronizationwhere the
two coupled dynamical systems are exactly of the same t
and given by a partial differential equation of the form

]u

]t
5FS u,

]u

]x
,
]2u

]x2
, . . . D , xP@0,L# ~1!

with spatial lengthL @11#. Usually one speaks of synchron
zation of two coupled dynamical systems when the tempo
evolution of their states coincides after some initial transie
If both coupled systems are of the same typeidentical syn-
chronizationmay occur where the statesu(t) and v(t) of
drive and response, respectively, converge to the same va
~i.e. iu(t)2v(t)i→0 for t→`). Note, that when we are
looking at spatially extended systems like PDE’s, the sta
u(x,t) and v(x,t) are continuous functions of the spati
variable~s! and the state space is infinite dimensional. In t
case the above definition reads as follows: Two spatially
tended systems are called identically synchronized, if th
states converge to each other in the whole spatial dom
i.e., ;xP@0,L#: limt→`iu(x,t)2v(x,t)i50.

For xPZ andtPZ this is the definition of synchronization
of CML’s, for xPZ andtPR for CODE’s and forx,tPR for
PDE’s. As in the case of coupled oscillators there exists
invariant manifoldu(x)[v(x) ~also called synchronization
manifold!, whose stability properties determine the occu
3736 © 2000 The American Physical Society
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FIG. 1. Left: Principle of the sensor coupling scheme. Right: Visualization of three sensor time series~plotted overlayed! measured from
spatiotemporal chaos.
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. In
rence of stable~high quality! synchronization@12#. This
manifold is asymptotically stable and high quality synch
nization occurs if the transverse subsystemw'(x,t)
5 1

2 @u(x,t)2v(x,t)# has an asymptotically stable fixed poi
at zero. Indeed, all techniques@1# for verifying synchroniza-
tion, e.g., necessary criteria like negative conditiona
Lyapunov exponents orsufficientcriteria @12# like Lyapunov
functions and stability of invariant sets, can be generali
and in principle be applied to these systems, too.

But the particular coupling techniques often are diffic
to generalize for PDE’s in a straightforward way, becau
this would imply that one has to couple in the whole spa
domain@13# or in points@3,5,14#, which may be impractica
in experiments. Thesensorcoupling scheme, introduced i
Refs.@7,8#, generalizes the pinning coupling scheme to s
tems with continuous space variables. The idea is that typ
experimental measuring devices have a finite resolutionl and
measure local spatial averages of some spatial observ
According to Refs.@7,8# we want to call these elementssen-
sors that measure scalar time series of the form

ūn~ t !5
1

l End2 l /2

nd1 l /2

u~ t !dx, n51, . . . ,N, ~2!

which represent average values of spatial intervals of widl.
Figure 1~b! shows a spatiotemporal chaotic dynamics wh
the amplitude information is color coded. We have measu
with three sensors yielding three scalar signals which
plotted overlayed on the original dynamics. One sees tha
cannot resolve all fine detail in space anymore, but we h
now, due to our finite resolution, only some averaged inf
mation about the local dynamics from parts of the syste
However, as we shall demonstrate in the following, this
for properly chosen coupling parameters enough to co
pletely synchronize this system with another~identical! sys-
tem using the sensor time series as coupling signals.

Because of the exponential decrease of spatial corr
tions in extended chaotic systems, we need for this coup
technique several but a finite numberN of coupling signals
that contain all the necessary information to reconstruct
whole state in the synchronization process. An equidis
arrangement ofN sensors with distanced5L/N turns out to
be nearly optimal~for periodic boundary conditions! for this
-
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coupling scheme@8#. Now we have to choose a couplin
term that will be applied locally with each sensor signal
driving force. We use throughout this paper a unidirectio
dissipative coupling, but we want to stress that other c
pling terms should work well, too. To implement this co
pling we have to measure in the driven systemN sensor
signals at the same positions and apply the dissipative c
pling term with coupling strengthe

f ~ ūn ,v̄n!5H e~ ūn2 v̄n!, nd2 l /2<x<nd1 l /2

0, elsewhere
~3!

at each sensor positionn51, . . . ,N, respectively. Figure
1~a! shows the principle of the sensor coupling scheme
illustrates where we place the sensors and apply the l
dissipative coupling forces.

As an example we examine in this paper the on
dimensional complex Ginzburg-Landau equation~GLE!
@15,16#

]u

]t
5mu2~12 ia!uuu2u1~11 ib!Du, uP@0,L# ~4!

with periodic boundary conditions. This equation posses
uniform traveling wave solutions, which are all unstab
for parameter values ofa andb with 12ab,0 where dif-
ferent types of turbulence occur. In this paper we exam
two parameter sets,m51.0, a52.0, and b50.7 corre-
sponding to phase turbulence@see Fig. 2~a!# and m
51.0, a52.0, b51.2, which yields defect turbulence@see
Fig. 2~b!#. For synchronization purposes we apply to an ide
tical copy of Eq.~4! at N locations coupling terms~3! using
sensors of widthl. Note that this is a local control techniqu
and the driven system

]v
]t

5mv2~12 ia!uvu2v1~11 ib!Dv1 f ~ ūn ,v̄n! ~5!

can evolve between the sensor locations freely in time
Fig. 3 we useN515 equally spaced sensors with widthl
53 and coupling strength«50.2 to synchronize two GLE’s
with lengthL5100 in the phase turbulent regime.
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3738 PRE 61LUTZ JUNGE AND ULRICH PARLITZ
Figure 3~a! shows the dynamics of the driving system a
in Fig. 3~b! the evolution of the response system is plotte
At t5170 the coupling is switched on and the response s
tem converges quickly to the synchronized state. At the
ginning of the coupling the perturbation introduced throu
the controllers induces a periodic pattern, which decays v
fast in favor of the dynamics of the synchronized state. In
next section we shall study this coupling scheme and
involved parameters in more detail.

III. INTERDEPENDENCE OF THE COUPLING
PARAMETERS OF THE SENSOR COUPLING

In this section we discuss the results from an intens
numerical investigation of the properties of the sensor c
pling scheme using the one-dimensional GLE. In particu
we shall discuss the relation and interdependence of the t
coupling parametersN, l , ande. For solving the PDE’s we
used an implicit Crank-Nichelson discretization scheme@17#
which is second order in space, first order in time, and
conditionally stable. For consistency, all simulations we
performed with a time step of 0.01 and a grid of 2 points p
unit length of the PDE. We checked the calculations for fin
resolutions in space and time and found qualitatively a
quantitatively good agreement.

The GLE shows extensive chaos which means that ex
sive quantities like the attractor dimension are growing l

FIG. 2. Dynamical regimes of the Ginzburg-Landau equat
~4!. ~a! Phase turbulence.~b! Defect turbulence, amplitudes are gra
scaled.

FIG. 3. Synchronization of two coupled GLE’s in the pha
turbulent regime.~a! Drive system.~b! Response system driven b
N515 sensors with widthl 53 and coupling strengthe50.2.
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early with the system size. We checked this numerically a
have computed the Lyapunov dimension for several leng
@18#.

In Fig. 4 the Lyapunov dimension is plotted vs the leng
L in the two examined dynamical regimes~see. Fig. 2!. The
Lyapunov dimensionDL shows an excellent linear scalin
with the lengthL for phase and defect turbulence, whic
confirms the results of Keefe@16#. Making a least squares fi
of the slopes we obtain the following relations,DL

;0.332L for defect turbulence andDL;0.102L for phase
turbulence. The higher slope for the defect turbulent regi
reflects the more erratic and complex behavior of the dyna
ics in this regime. In the rest of this section, we want
examine the synchronization of defect turbulence in m
detail.

In experiments one often wants to use as few control
as possible. Therefore, we computed the minimal numbeN
of sensors needed to synchronize the two systems for se
configurations of the coupling parameters. In the followi
this quantity will serve as an indicator for the performance
the used coupling configuration.

Figure 5 shows the scaling of the minimal number
needed sensorsN with the system lengthL for fixed width l
and different values of the coupling strength« of the local
coupling term. In the left plot the widthl is fixed to 0.5 and
in the right plot l 53.0. Each line corresponds to a speci
coupling strength« which increases from top«50.5 to bot-
tom «54.0. Note that the minimal number of sensorsN
needed for synchronization scales linearly with the syst
lengthL, which is valid for all combinations ofl and« yield-
ing synchronization. In other words, the distance betwe
two sensors remains constant when one increases the le
L of the system. This distance is of the same order as
correlation length of the dynamics. The reason that we do
have to couple in the whole spatial domain is the fact t

n

FIG. 4. Lyapunov dimensionDL vs the system lengthL for
defect turbulence@~a! m51.0,a52.0,b51.2] and phase turbulenc
@~b! m51.0,a52.0,b50.7].

FIG. 5. Minimal numberN of coupling signals needed for syn
chronization vs the spatial lengthL for fixed width l of the sensors.
Left: l 50.5 and rightl 53.0. The coupling strength« increases
from top to bottom«50.5,1.0,1.5,2.0,3.0,4.0.
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the uncoupled areas are correlated with the coupled are
their neighborhood and they receive the information ab
the drive dynamics due to the internal spatial diffusion of
system. In the left plot of Fig. 5 we usedl 50.5, which is one
grid point per controller and means coupling in pinni
points in the used spatial resolution of the numerical integ
tion scheme. The stronger the coupling strength« the less
coupling signals we need to obtain synchronization. This
what one might expect: stronger coupling leads to better
formance. In the right plot we used the spatially extend
sensor signals of widthl 53.0 and we find that the number o
sensor signalsN seems to be independent of« and we need
fewer controllers than in the left plot. The explanation of th
phenomena is again that the uncoupled areas receive th
formation from the neighboring coupled areas due to inter
diffusion. When we use very small sensors we have to ap
a strong coupling force to transport the local drive inform
tion to the uncoupled areas between the sensor positions
when using spatially extended sensors it is not necessa
apply strong coupling because the uncoupled areas are m
smaller than in the case of coupling with pinnings. On t
other hand, because of using local spatially averaged c
pling signals, we do not have to transmit more information
achieve this. The left plot in Fig. 6 shows the dependenc
N on the widthl for a fixed system length ofL5100, the
coupling strength« increases from top to bottom. For pin
ning coupling (l 50.5 in our spatial grid! we have to apply
strong forcing to yield good performance~in the sense of
using fewer coupling signals or controllers!. By increasing
the width l of the sensor signals we find good performan
even for weak coupling strengths. Using very wide sensor
slightly better than intermediate values of the widthl, but
then we come close to the~dotted! line where the sensor
start to overlap which means that the controllers cover
whole system lengthL. To show that this behavior of th
coupling scheme is quite general, at least for the GLE,
consider in the right part of Fig. 6 a quantity which is inde-
pendent of the system lengthL. Because the numberN of
sensors needed to obtain synchronization behaves like
extensive quantity, we can eliminate the system lengthL by
calculating the slopesm of Fig. 5. A small slope indicates
good performance while a greater slope means that we h
to use more controllers per unit length of the system
achieve synchronization. Since the Lyapunov dimensionDL

FIG. 6. The left figure shows the minimal numberN of sensors
needed for synchronization vs the widthl of the sensors for a fixed
system lengthL5100. The right plot shows the numberN of sen-
sors needed for synchronization normalized to the Lyapunov
mensionDL vs the widthl. The coupling strength« increases from
top to bottom«50.5,1.0,1.5,2.0,3.0,4.0. The dotted line in the l
plot indicates the border where the sensors begin to overlap.
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also depends linearly on the system sizeL, the slopem
5N/L is equivalent to N/DL . With the relations DL
'0.331L andN'mL @19#, we can convert the slopesm to
N/DL'm/0.331. This quantity is plotted in the right plot o
Fig. 6.

The quantityN/DL is independent of the system lengthL
and is a measure for the minimal number of controllers
attractor dimension needed for synchronization with t
coupling. This allows us to study the benefit of using sp
tially extended sensors in a compact and systematic w
The right plot of Fig. 6 indicates that the efforts necess
for synchronizing two coupled GLE’s~4! and~5! with sensor
coupling depend only on the dimensionality of the under
ing chaotic attractor. To synchronize the two coupled GLE
@Eqs.~4! and ~5!# it is sufficient to use about 0.5 controller
per attractor dimension. One needs the fewest coupling
nals when coupling with sensors which possess a large w
l. Therefore, from a practical point of view, the sensor co
pling is superior to the pinning coupling technique.

Because of the use of spatially extended sensors one
ask how much area is used by the controllers. This prob
is addressed in Fig. 7 where the percentage of the are
space covered by the sensors and controllersNl/L is plotted
vs the widthl and the system sizeL, respectively. The left
plot of Fig. 7 shows clearly that the price one has to pay
transmitting fewer sensor signals by using controllers w
greater widthl ~see Fig. 6! is the larger area one has t
influence. When one is transmitting the minimum inform
tion by using the largest possible widthl one has to couple in
the whole spatial domain. Therefore, the loss of informat
through the local averaging process and by using fewer c
pling signals is compensated through a larger size of
coupled areas. The left plot of Fig. 7 shows that this effec
independent of the system sizeL. In the diagram on the
right-hand side of Fig. 7,Nl/L is plotted vs the system sizeL
for different values of the widthl. The percentage of the are
used for coupling is for a fixed coupling configuration ind
pendent of the system length@20#. This confirms our state-
ment above that the distance between the controllers rem
constant for fixedl and« and therefore the covered area, to

IV. STABILIZING THE HOMOGENEOUS STEADY STATE

The sensor coupling technique can also be applied to s
press spatiotemporal chaos. To demonstrate this, we h
stabilized the homogeneous steady stateu[0 of Eq. ~4!.
This state is a solution of Eq.~4! and is highly unstable. To

i-

FIG. 7. Percentage of the system sizeL covered by the control-
lers vs l and L: Left: Nl/L vs l for L5200 and «
50.5,1.0,1.5,2.0,3.0,4.0~from bottom to top!. Right: Nl/L vs L for
«52.0 andl 50.5, . . .,8.0 ~from bottom to top!.
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3740 PRE 61LUTZ JUNGE AND ULRICH PARLITZ
do this we usedu(x)50 as a driving signal for the sensor
i.e., we try to synchronize the driven system with the ze
solutionu[0. Again we have scanned the coupling para
eters and the results are presented in Fig. 8. The plots
similar to Fig. 6. The left diagram in Fig. 8 shows the num
ber N of sensors needed for stabilization ofu[0 vs the
width l for a fixed system lengthL5100. In the right plot the
quantityN normalized by the Lyapunov dimensionDL of the
unperturbed dynamics is given in dependence on the widl.
The relations between the coupling parameters remain q
tively the same compared to the synchronization case,
now one has to use more controllers to achieve the con
goal. The quotientN/DL is again independent of the syste
sizeL. This quantity is plotted vsl in the right-hand side of
Fig. 8. One may conclude that at least one sensor contr
per attractor dimension is necessary, which is approxim
tively twice that in the synchronization case.

This is intuitively clear when one remembers that the st
u[0 is not an attractive set in phase space while the orig
attractor is a stable solution of Eq.~4!. It is thus not surpris-
ing that the controllers have to be closer to each other.
widths l .3 we were not able to stabilize the homogeneo
steady stateu[0 and turbulence or stationary solutions o
cur between the controllers dependending on the coup
strength« and the number of controllersN.

V. LOCALIZED SYNCHRONIZATION AND CONTROL

In the preceding sections we have applied the sensor
pling scheme globally, which means that our goal was
control/synchronize the driven system on the whole spa
axis. In the following we demonstrate synchronization a
control of parts on the spatial domain. The sensor couplin
a local control technique and we have argued above tha
performance of the coupling scheme depends only on
distance between neighboring controllers. Therefore it is
surprising that it is also possible to achieve the desired g
dynamics only in local regions. In Fig. 9 we suppress ch
only in two regions. To do this, we have arranged in tw
areas four controllers with widthl 52.0 and a coupling
strength«52.0, respectively. The small rectangles in Fig
indicate the position and width of the controllers. The figu
shows that chaos is successfully suppressed in the two a
Near the border of the sensors the chaotic dynamics is
totally suppressed and we observe slight fluctuations aro
zero but in the middle of the two regions the amplitude va

FIG. 8. NumberN of sensors needed for stabilizing the hom
geneous steady stateu[0 vs the widthl for a fixed system length
L5100 ~left! and normalized by the Lyapunov dimensionDL

~right!. The coupling strength« increases from top to bottom («
51.5,2.0,3.0,4.0).
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ishes completely. The rest of the system remains in the
fect turbulent regime.

In Fig. 10 we tried to synchronize the two systems in tw
regions using six controllers with widthl 52.0 and a cou-
pling strength«52.0, respectively. The upper plot shows th
amplitude dynamic of the driven system where again
positions of the controllers are indicated through small re
angles. To verify local synchronization, the lower plot
Fig. 10 shows the local synchronization errore(x,t)
5uu(x,t)2v(x,t)u. In the coupled regions we observe stab
synchronization with only slight fluctuation around the sy
chronized state at the borders of the controlled areas.

VI. PARAMETER ESTIMATION OF SPATIALLY
EXTENDED SYSTEMS

As an application of the sensor coupling scheme we e
mate the model parameters of the GLE using a method ba
on chaos synchronization. This method was demonstrate
several authors@2# to work well for coupled maps and
ODE’s even with experimental data. The use of synchro
zation has the advantage that only the parameter vectorp has
to be estimated and not the whole state of the driving syst
This gives a drastic reduction in the complexity of the pro
lem, in particular in the case of spatially extended syste
Suppose we have a dynamical system which is well mode
through a map, ODE, or in our case through a PDE, e.g

]u

]t
5FS u,

]u

]x
,
]2u

]x2
, . . . ;pD , xP@0,L#. ~6!

Furthermore, we assume that the system can be identic
synchronized with a computer model driven by the measu
sensor signalssi5hi(u),i 51, . . . ,N, if we know the correct
parameter vectorp. The strategy to find this set of correc
parameters is the following. We choose an initial guess

FIG. 9. Local suppression of chaos using two areas with f
controllers of widthl 52.0 and coupling strength«52.0, respec-
tively. The small rectangles on top of the diagram indicate the
sition and the width of the sensors. The figure shows the amplit
dynamics of the controlled systemv. The system length wasL
5100 and the parametersm51.0,a52.0,b51.2 lead to defect tur-
bulence.
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PRE 61 3741SYNCHRONIZATION AND CONTROL OF COUPLED . . .
the parameter vectorp0 and if this choice is not too bad
more sophisticated form of synchronization called gene
ized synchronization@9# occurs. The driving system dete
mines the dynamics of the driven system still in a uniq
manner despite the parameter difference between the
systems. The attractors of drive and response are not id
cal copies of each other, but there still exists a relation
tween them. We can use this behavior to estimate the
known parametersp of our model by varyingp as long as
the synchronization error goes to zero which means that
systems synchronize perfectly and we have found the cor
parameter vectorp of the driving system.

Generalized synchronization@9# ensures that the synchro
nization error is a smooth function ofp and simulations in-
dicate that this is valid in a large area of the parameter sp
@2#. The strategy for parameter finding in Ref.@2# was the
minimization of the overM time steps averaged synchron

zation errorE(p)5A1/M(n,i 51
M ,N @ ūi

n2 v̄ i
n#2>0 whereūi

n and

v̄ i
n denote the measured sensor signals at positioni at the

time n. In this paper we want to use another strategy.
compute the synchronization errors of the sensors at s

FIG. 10. Local synchronization of chaos using two areas w
six controllers of widthl 52.0 and coupling strength«52.0, re-
spectively. The small rectangles indicate the position and the w
of the sensors. The system length wasL5100 and the parameter
m51.0,a52.0,b51.2 result in defect turbulence. Top: amplitud
dynamics of the response systemv. Bottom: synchronization erro
uu2vu.
l-

e
o
ti-
-

n-

e
ct

ce

e
e

time T, e.g.,ei(T;p)5ūi(T)2 v̄ i(T). From theN measured
sensor signals we build the error function

e~p!5maxS U(i 51

N

@~ ūi2 v̄ i !.0# U
U(

i 51

N

@~ ūi2 v̄ i !,0# U D ~7!

and determine the roots ofe(p) using a simple damped New
ton method@17#. In this error function~7! we have summed
over all sensor errorsei5ūi2 v̄ i which are greater~less! than
zero and took the maximum of the absolute values of the
sums as synchronization error. The error function~7! is
somewhat sophisticated, but since we synchronize the m
sured sensor signals with a computer model we can ea
compute any complicated cost function. The advantage
motivation of Eq.~7! is the combination of all local synchro
nization errors into one quantity and the fact that the lo
errorsei(t) cannot cancel each other. For the parameter
timation we introduced in Eq.~4! additional parameters in
cluding the spatial lengthL5p4

]u

]t
5p1u2~12 ip2!uuu2u1~11 ip3!Du, xP@0,p4#.

~8!

The PDE was solved again by an implicit scheme but n
with a finer resolution of 1000 grid points. We have es
mated the parameters of the GLE~8! for two parameter sets
The first set p151.0,p252.0,p350.7,p45L540p yields
phase turbulent dynamics. To synchronize the two syste
we usedN599 sensor signals with widthl 50.5 for the cou-

FIG. 11. Convergence of the estimated parameter, the do
lines show the true parameter values. Left: phase turbulenceP3

50.7. Right: defect turbulenceP351.2.
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pling. In the defect turbulent regimep151.0,p252.0,p3
51.2,p45L540p we usedN533 sensors with widthl
53.5. Figure 11 shows the evolution of the parameters d
ing the estimation procedure, phase turbulence~left column!
and defect tutbulence~right column!. In both regimes all
parameters including the spatial lengthp45L are estimated
correctly. This shows that even in high-dimensional syste
(DL'13 for phase turbulence andDL'40 for defect turbu-
lence! synchronization based parameter estimation meth
can be applied succesfully. Note that for phase turbule
coupling in pinning pointsl 50.5 ~one spatial grid point in
the numerical integration scheme! is used and we neede
more coupling signals compared to defect turbulence wh
wide sensorsl 53.5 were applied. This shows again the b
ter performance of spatially extended coupling devices. T
results are robust with respect to small additional noise
the sensor signals. A more detailed discussion of the per
mance of synchronization based parameter estimation a
rithms with noisy coupling signals can be found in Ref.@21#
where the authors examined different low-dimensional s
tems and a high-dimensional hyperchaotic Ro¨ssler type os-
cillator.
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VII. CONCLUSION

In this paper we have examined synchronization and c
trol of continuous spatially extended systems~here the
Ginzburg-Landau equation! using locally averaged coupling
signals. The number of coupling signals needed for synch
nization scales linearly with the system length and
Lyapunov dimension, respectively. Using spatially extend
sensors results in a significant reduction of the minimal nu
ber of coupling signals. The coupling scheme was app
succesfully for global and local synchronization and cont
purposes. As an application we used this scheme for estim
ing the parameters of a PDE from time-series.
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